Files on Detached Mounts

Mentors: Pavel Tikhomirov

May 11, 2025

Contents
1 Abstract 1
2 Technical Details 2
2.1 Problem with Lazily Unmounted fds 2
2.2 New Kernel Syscall to the Rescue: statmount 2
2.3 Finding mountinfo for a file on detached mount 2
3 Implementation 3
3.1 The General Plan e 3
3.1.1 Checkpointing e 3
3.1.2 Restoring e 3
3.2 Identifying a detached mount Lo oo 4
3.3 Marking the mount as detached and storing details 4
3.4 Restoringo 4
3.4.1 Creating a Temporary Bind Mount 4
3.4.2 Lazily Unmounting These Mount Points 4
4 Timeline 5
4.1 May 8 - June 1: Community Bonding Period 5
4.2 June2-June 16 Lo e 5
4.3 June 17-June 30 Lo 5
4.4 July 1-July 14: Mid Termo o e 5
4.5 July 14 - July 28 L e 5
4.6 July 29 - August 28 . .. L 5
5 Personal Information 5
5.1 About Me e 5
5.2 Open Source Activity L e 6
5.3 Commitments During GSOC 2025 6
6 References 6

1 Abstract

Whenever we attach a disk to our computer, we need to know a couple of things before we can
access the data from it.

1. File System
Governs file organization and access (ext2, ext4 are some examples)

2. ”Location”
All devices attached to the computer appear as ”special” files inside the /dev directory. For
example, a partition of my SSD is mounted at /dev/nvmeOnipl

Say we want to access some data from one of these devices; we will first have to attach them to
the ”Root File System”. To do this, we use the mount syscall. After we finish using the disk
(device), we can remove it from the "Root File System”. For that, we use the umount syscall.
The umount syscall provides a flag called MNT_DETACH. MNT_DETACH makes the device unavailable
for new access; however any opened file(s) are still valid. Unmounting in such a way is called lazily
unmounting the drive. CRIU currently does not support checkpoint/restore of such applications.

2 Technical Detalils

2.1 Problem with Lazily Unmounted fds

Currently if you try to checkpoint the program given below:

int main(void)

{
char xsource = ” /home/bsach/tmp” ;
char xdst = ” /home/bsach/Code/transport”;
mount (source , dst, NULL, MSBIND, NULL);
int fd = open(” /home/bsach/dumb/hello” , O.CREAT | OWRONLY);
char xdata = "hello\n”;
int count = write(fd, data, strlen(data) + 1);
umount2 (dst , MNTDETACH) ;
printf(”have-lazily -umounted\n”);
printf(” waiting - for -C/R\n”);
while (1);

}

(complete program here), you get the following error:

(00.018117) Error (criu/files-reg.c:1790): Can’t lookup mount=2943 for fd=3 path=/hello
(00.018164) Error (criu/cr-dump.c:1681): Dump files (pid: 99810) failed with -1

This happens because CRIU gets mnt_id (unique id of a mount) from /proc/$pid/fdinfo/$£fd.
It then looks for this mnt_id in /proc/$pid/mountinfo/. But, when a mount gets unmounted
(lazily or otherwise), its information (major, minor dev number, etc.) is no longer present in
/proc/$pid/mountinfo. All these details are necessary to recreate the file during restoration.

2.2 New Kernel Syscall to the Rescue: statmount

statmount was introduced in the 6.8 kernel. statmount returns to us the details for a given mnt_id.
Here’s the output if you call statmount on a random mnt_id:

$ sudo ./listing

mnt_id : 2147483677
mnt_parent_id: 2147483681
fs_type: proc
mnt_root: /
mnt_point : /proc
mnt_opts: proc
sb_dev_major: 0
sb_dev_minor: 25

We end up getting all the info available at /proc/$pid/mountinfo in the form of a nice struct,
which is way better (and faster) than parsing a string. The best thing, however, is that we can also
use these syscalls to find information about unmounted (lazily or otherwise) mount points (atleast
for kernels newer than 6.7).

2.3 Finding mountinfo for a file on detached mount

Given a fd, we can get call statx on it to find the mount ID of the mount containing this file.
Specifically, stx_mnt_id with the STATX_MNT_ID_UNIQUE flag gives us this info. Now, we can pass
this mount ID to statmount. Here’s a small program that does that:

int main(void)
{
#define STATMOUNT_BUFFER_SIZE 4096
char *source = "/home/bsach/tmp";
char *dst = "/home/bsach/Code/transport";
mount (source, dst, NULL, MS_BIND, NULL);
int fd = open("/home/bsach/dumb/hello", O_CREAT | O_WRONLY);

https://gist.github.com/bsach64/a2715701634de0f837429d8d66bdb9e8
https://man7.org/linux/man-pages//man2/statmount.2.html

char *data = "hello\n";

int count = write(fd, data, strlen(data) + 1);

umount2 (dst, MNT_DETACH);

printf ("havelazily_ umounted\n");

struct statx stat;

statx(fd, NULL, AT_EMPTY_PATH, STATX_MNT_ID_UNIQUE, &stat);

struct mnt_id_req req = {
.size = sizeof(req),
.mnt_id = stat.stx_mnt_id,

.param = STATMOUNT_SB_BASIC | STATMOUNT_MNT_BASIC
| STATMOUNT_PROPAGATE_FROM
| STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT
| STATMOUNT_FS_TYPE,
};
struct statmount *stmnt = malloc (STATMOUNT_BUFFER_SIZE);
statmount (&req, stmnt, STATMOUNT_BUFFER_SIZE, 0);
printf ("mnt_id:\t\t%" PRIu64 "\nmnt_parent_id:\t%" PRIu64 "\n"
"fs_type:\t/s\nmnt_root:\t¥%s\nmnt_point:\t)s\nmnt_opts:\t/s\n",
(uint64_t)stmnt->mnt_id,
(uint64_t)stmnt->mnt_parent_id,
stmnt->str + stmnt->fs_type,
stmnt ->str + stmnt->mnt_root,
stmnt->str + stmnt->mnt_point,
stmnt ->str + stmnt—>mnt_opts);
printf ("sb_dev_major:\t\t%" PRIu64 "\nsb_dev_minor:\t\t%" PRIu64 "\n",
(uint64_t)stmnt->sb_dev_major,
(uint64_t)stmnt->sb_dev_minor
)
}

$ sudo ./simple
have lazily umounted

mnt_id: 2147483681
mnt_parent_id: 2147483650
fs_type: ext4d
mnt_root: /
mnt_point: /
mnt_opts: extd
sb_dev_major: 259
sb_dev_minor: 6

We would like to do something similar if, for a fd, we cannot find its details in /proc/$pid/mountinfo,
we instead use statx and statmount. The assumption here is that we have an fd at a
mnt_id but it’s details are not present in /proc/$pid/mountinfo then the fd belongs to
a detached mount.

3 Implementation

3.1 The General Plan
3.1.1 Checkpointing

1. When we can’t find info about a mnt_id in /proc/$pid/mountinfo we obtain its details
using statmount.

2. Identify that the mnt_id belongs to a detached mount.

3. Mark the fd to belong to detached mount in the image and store all info obtained from
statmount.

3.1.2 Restoring

1. Create a bind mount using the info in the image.

2. Open the file in the same way as CRIU would open any other file.

3. Lazily unmount the mount point.

3.2 Identifying a detached mount

CRIU stores all mount-related information in a struct mount_info. CRIU stores all mounts-
related info in a list called mntinfo (a global variable). Functions like dump_one reg file, call
lookupmnt_id to get mount details (from the list) in the form of a struct mount_info.

For a simple solution (for systems running a kernel with support for statmount), we can do the
following:

int dump_one_reg_file(int 1fd, u32 id, const struct fd_params *p)

{

mi = lookup_mnt_id (p—>mnt_id);
if (mi = NULL) {

} else if (is_in_detach_mount(1fd)) {

/* pass */
} else {

Here’s what the is_in_detach _mount function should do:

1. Call statx on the £d with STATX_MNT_ID_UNIQUE.

2. Call statmount with statx_mnt_id.

w

. Dump the info we get from statmount.

4. Add a new struct mount_info to mntinfo, so any other fds on this mount can get mount
info from the list.

This works because we have a valid fd with a mount point not listed in /proc/$pid/mountinfo
so the fd has to belong to a detached mount.

3.3 Marking the mount as detached and storing details

We can add an optional bool is_detached field to mnt.proto’s mnt_entry message. We can store
data from statmount into the existing mnt_entry message. Also, since mount namespaces are
dumped after files when we add to the mntinfo list the mount should automatically get dumped.

3.4 Restoring

3.4.1 Creating a Temporary Bind Mount

We will have all the information we need to create a bind mount from the image files. We should
do this before opening fds, i.e., alongside creating other mount points.

3.4.2 Lazily Unmounting These Mount Points

We can keep track of all mount points that will be lazily unmounted in a list. After all files have
been opened, we can call umount with MNT_DETACH on each of the mount points.

4 Timeline

4.1 May 8 - June 1: Community Bonding Period

I would like to spend 1-2 weeks familiarizing and/or re-familiarizing with CRIU’s codebase and
learning more about mounts and related concepts that may be required in this project. After that,
we can get to coding.

4.2 June 2 - June 16
1. Write the simplest possible zdtm test case that fails.
2. Figure out what extra info may need to be dumped and modify proto files.

3. Write the code for getting info on detached mounts from statx and statmount.

4.3 June 17 - June 30

1. Ensure all mount info (of detached mount) and fds on the mount and dumped correctly.

2. Write more tests for testing more edge cases.

4.4 July 1 - July 14: Mid Term

1. Some buffer time here to account for any delays.
2. Open up a draft PR for comments.

3. Finish everything related to checkpointing before the mid-term review.

4.5 July 14 - July 28

1. Figure out and implement the restoring of fds on detached mounts.

4.6 July 29 - August 28

1. Act on all feedback given in the PR and hopefully get the changes merged before the end of
GSOC.

2. Write the final work report.

These timelines are rough estimates; some parts of the project may take more time than others.
There’s a lot still left to figure out, hence guidelines are intentionally vague.
5 Personal Information

Name: Bhavik Sachdev

Email: b.sachdev1904@gmail.com

GitHub: bsach64
LinkedIn: Bhavik Sachdev

Location: Raipur, India

e Timezone: GMT 40530

5.1 About Me

I am currently a third-year student at IIIT Naya Raipur in India, pursuing a degree in Computer
Science. I am also a part-time backend intern at Fam primarily working with their notification
service.

mailto:b.sachdev1904@gmail.com
https://www.github.com/bsach64
https://www.linkedin.com/bsach64
https://www.famapp.in/

5.2

Open Source Activity

I was part of Google Summer of Code 2024 with CRIU where I worked on pidfd support. Here’s
a brief summary of the work I have done with CRIU:

1.
2.

5.3

zdtm: Distinguish between fail and crash of dump

criu: Add support for pidfds

pidfd: block SIGCHLD during tmp process creation

Contributed a test case to fix this issue relating to dead pidfd restore.

Wrote a document describing checkpoint/restore for pidfd.

Commitments During GSOC 2025

I will finish my semester by 20th May 2025 and have no school commitments after that point. If
Fam offers to extend my internship, I may continue working with them. However, I will dedicate
the time needed to complete this project and am willing to extend the timeline if necessary.

6

References

manpage for mount

manpage for umount

manpage for mount_namespace

manpage for listmount

manpage for statmount

manpage for statx

Great sample on how to use listmount and statmount

Great article on the /dev directory

https://github.com/checkpoint-restore/criu/pull/2376
https://github.com/checkpoint-restore/criu/pull/2449
https://github.com/checkpoint-restore/criu/pull/2491
https://github.com/checkpoint-restore/criu/pull/2505
https://github.com/checkpoint-restore/criu/issues/2496
https://criu.org/Pidfd
https://man7.org/linux/man-pages/man2/mount.2.html
https://man7.org/linux/man-pages/man2/umount.2.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages//man2/listmount.2.html
https://man7.org/linux/man-pages//man2/statmount.2.html
https://man7.org/linux/man-pages/man2/statx.2.html
https://github.com/torvalds/linux/blob/master/samples/vfs/test-list-all-mounts.c
https://www.baeldung.com/linux/dev-directory

	Abstract
	Technical Details
	Problem with Lazily Unmounted fds
	New Kernel Syscall to the Rescue: statmount
	Finding mountinfo for a file on detached mount

	Implementation
	The General Plan
	Checkpointing
	Restoring

	Identifying a detached mount
	Marking the mount as detached and storing details
	Restoring
	Creating a Temporary Bind Mount
	Lazily Unmounting These Mount Points

	Timeline
	May 8 - June 1: Community Bonding Period
	June 2 - June 16
	June 17 - June 30
	July 1 - July 14: Mid Term
	July 14 - July 28
	July 29 - August 28

	Personal Information
	About Me
	Open Source Activity
	Commitments During GSOC 2025

	References

