
Add Support for pidfd File Descriptors

Mentors: Alexander Mikhalitsyn, Christian Brauner

May 11, 2025

Contents

1 Abstract 1

2 Technical Details 1
2.1 pidfd Details . 1
2.2 Checkpointing . 2

2.2.1 Checkpointing Files . 2
2.3 Restoring . 2

2.3.1 Restoring Files . 2

3 Implementation 2
3.1 Checkpointing a pidfd . 2

3.1.1 Detecting a pidfd . 2
3.1.2 Dumping a pidfd . 3
3.1.3 Defining image files for pidfds . 3
3.1.4 Parsing /proc for pidfds . 4

3.2 Restoring a pidfd . 4
3.2.1 Collect pidfd Data from Images . 4
3.2.2 file desc ops . 4
3.2.3 Opening pidfd(s) for Process(es) Outside the Process Tree Being Restored 4
3.2.4 Opening pidfd(s) for a Process(es) Inside the Process Tree Being Restored 4

3.3 File Descriptors created using pidfd getfd . 4
3.4 Adding Tests . 5

4 Timeline 5
4.1 2 April - 1 May . 5
4.2 1 May - 26 May (Community Bonding Period) . 5
4.3 27 May - 12 July (Phase I) . 5
4.4 12 July - August 26 (Phase II) . 5
4.5 After August 26 . 5

5 Personal Information 6
5.1 About Me . 6
5.2 Open Source Activity . 6
5.3 Commitments During GSOC 2024 . 6

6 References 6

1 Abstract

The Linux kernel uses process IDs (PID) to identify processes. A PID is just an integer (its
maximum value is 4194304 on my machine). Consider a process (let’s say process X) that uses a
PID to identify a process (let’s say process A). Suppose that A dies. If a large number of processes
are being created, the PID of A might get reassigned to a different process. Now, process X ends
up communicating with the wrong process. This reassignment of the PID of A is known as PID
recycling.

PID recycling creates a problem for any tool using PIDs to identify processes since we cannot
always ensure that a PID points to the same process. To solve the problem of PID recycling,
pidfds were introduced in the Linux kernel. A pidfd is a file descriptor that refers to a process

1

alexander@mihalicyn.com
mailto:christian@brauner.io

and we can use it to send signals to that process. pidfds ensure that the signal is being sent to
the correct process. CRIU cannot dump/restore on processes that use pidfds. This solution is
expected to add support for pidfds.

2 Technical Details

2.1 pidfd Details

A pidfd references the kernel’s struct pid.
Here’s how an entry of a pidfd looks like in /proc/$pid/fdinfo/$number:

pos : 0
f l a g s : 02000002
mnt id : 16
ino : 2102
Pid : 71937
NSpid : 71937

Here Pid and NSpid are unique to pidfds. So, while parsing /proc/$pid/fdinfo/ if we find a
Pid and/or NSpid entry we can assume that it is a pidfd.

• Pid: Refers to the pid of the process the pidfd points to.

• NSpid: Refers to the pid of the process the pidfd points to in its respective namespace.

There are three system calls relating to pidfds:

1. pidfd open: int syscall(SYS pidfd open, pid t pid, int flags)

creates a pidfd using a existing pid, returns -1 if no process exists with that pid.

2. int pidfd send signal: syscall(SYS pidfd send signal, pid t pid, int flags)

sends a signal to the process specified by the pidfd.

3. pidfd getfd: int syscall(SYS pidfd get fd, pid t pid, int targetfd, int flags)

obtain a duplicate of another process’s file descriptor.

We can also use poll, select or epoll to wait on a pidfd.

2.2 Checkpointing

During Checkpointing, CRIU saves all the information related to the process tree (memory maps,
file descriptors, pipe paramaters, etc). It gets all this information from the /proc file system.
There are three steps for checkpointing:

1. Collect process tree and freeze it

2. Collect tasks’ resources and dump them (Dumping fds, VMAs, etc)

3. Cleanup

All this data is stored in a set of image files. These image files can be of 3 types:

• CRIU specific files in google protobuf format

• CRIU specific files with binary data in it

• image files in third party format

2.2.1 Checkpointing Files

For information related to fds, it parses the /proc/$pid/fdinfo/$number and /proc/$pid/fd/$number
directories. We can do this for pidfds as well.
Information about open file descriptors for each process is stored in a fdinfo-$id.img file (it has
PB data in it). Information from /proc/$pid/fdinfo/$number is stored in a files.img file. We
can extend this to store information related to pidfds as well.

All the information CRIU needs to store about files:

2

• FD numbers

• File Sharing (A child process might share a fd with it’s parent)

• Determining Inode Type

• State of File and Inode

2.3 Restoring

The restore procedure is done by CRIU morphing itself into the tasks it restores. It involves four
steps:

1. Resolve shared resources

2. Fork the process tree

3. Restore basic tasks resources

4. Switch to restorer context, restore the rest and continue

2.3.1 Restoring Files

For restoring opened files, CRIU needs to first open the file and then assign it the desired file de-
scriptor. This is not as simple as it sounds (opening a file and assigning it the right file descriptor).

3 Implementation

3.1 Checkpointing a pidfd

3.1.1 Detecting a pidfd

pidfd are similiar to signalfd, timerfd, etc in the sense that they also use the anonymous inode

infrastructure (But, this is changing?). We can use readlink to detect a pidfd.

// Declared in c r iu / inc l ude / f i l e s . h
stat ic int dump one f i l e (struct pid ∗pid , int fd , int l f d , struct f d op t s ∗opts ,

struct p a r a s i t e c t l ∗ c t l , FdinfoEntry ∗e , struct p a r a s i t e d r a i n f d ∗ dfds)
{

/∗ . . . ∗/
i f (p . f s t y p e == ANON INODE FS MAGIC) {

char l i n k [3 2] ;

i f (r e a d f d l i n k (l fd , l ink , s izeof (l i n k)) < 0)
return −1;

i f (i s p i d f d l i n k (l i n k))
ops = &pidfd dump ops ;

}
/∗ . . . ∗/

}

int i s p i d f d l i n k (char ∗ l i n k)
{

return i s a n on l i n k t yp e (l ink , ” [p id fd] ”) ;
}

3.1.2 Dumping a pidfd

CRIU has the dump one file method which is used dump a single file descriptor of a process.
Every different type of fd has the following structure associated with it:

3

https://criu.org/How_hard_is_it_to_open_a_file
https://criu.org/How_to_assign_needed_file_descriptor_to_a_file
https://github.com/torvalds/linux/commit/cb12fd8e0dabb9a1c8aef55a6a41e2c255fcdf4b

struct fd type ops {
unsigned int type ;
int (∗dump) (int l f d , u32 id , const struct fd parms ∗p) ;
int (∗pre dump) (int pid , int l f d) ;

} ;

A type must be defined for pidfds. The dump function pointer can point to function which does
the following things:

• Declare a struct defined using a protobuf message for pidfds

• Parse fdinfo and fill the struct with details

• Assign it the write ID

• Write that struct into a img file

The dumping of a timerfd can be used as a reference implementation.

3.1.3 Defining image files for pidfds

To add a entry which stores data from /proc/$pid/fdinfo/$number we create a images/pidfd.proto
file which defines the following message:

message p id fd en t ry {
op t i ona l u int32 id = 1 ;
op t i ona l u int64 pos = 2 ;
op t i ona l u int32 f l a g s = 3 ;
op t i ona l u int32 mnt id = 4 ;
op t i ona l u int64 inode = 5 ;
op t i ona l in t64 pid = 6 ;
op t i ona l in t64 nspid = 7 ;
op t i ona l fown entry fown = 8 ;

}

This struct is also added in the fd types enum and as an optional value for the file entrymessage
in images/fdinfo.proto. Now, if a pidfd is open a entry containing the above information will
appear in files.img.

3.1.4 Parsing /proc for pidfds

Information related to file descriptors is present in /proc/$pid/fdinfo/$number. A pidfd has
two unique entries namely, Pid and NSpid. If these entries are present we can say that a process
has a open pidfd.

CRIU has a function parse fdinfo fd s(int pid, int fd, int type, void* arg) in the
file criu/proc parse.c which makes arg argument point to a struct storing info for the specific
fd. We can use the fdinfo field macro to check for the fields Pid and NSPid if they are present
we create a PidfdEntry.

3.2 Restoring a pidfd

3.2.1 Collect pidfd Data from Images

Each file descriptor type has the following struct associated with it.

struct c o l l e c t im a g e i n f o {
int f d type ;
int pb type ;
unsigned int p r i v s i z e ;
int (∗ c o l l e c t) (void ∗ , ProtobufCMessage ∗ , struct cr img ∗) ;
unsigned f l a g s ;

} ;

The collect function pointer should point to a function that can collects information from the
ProtobufCMessage pointer and transfers it to a struct pointed to by the void *. This pattern is
common in CRIU and its implementation should be very straightforward.

4

3.2.2 file desc ops

struct f i l e d e s c o p s {
/∗ f d t y p e s from images/ f d i n f o . proto ∗/
unsigned int type ;
/∗
∗ Opens a f i l e by whatever s y s c a l l i s r e qu i r ed f o r t ha t .
∗ The re turned d e s c r i p t o r may be c l o s ed (dup2−ed to another)
∗ so i t shouldn ’ t be saved f o r any post−ac t i on s .
∗/

int (∗ open) (struct f i l e d e s c ∗d , int ∗new fd) ;
char ∗(∗name) (struct f i l e d e s c ∗ , char ∗b , s i z e t s) ;

} ;
Each type of file descriptor has this struct associated with it.

3.2.3 Opening pidfd(s) for Process(es) Outside the Process Tree Being Restored

In this case, we can simply reopen the fd (using pidfd open) during restore using the pid taken
from /proc/$pid/fdinfo/$number.
But, there are two problems with this approach:

• The process (whose pidfd was open) might have exited between checkpoint and restore.

• The pid we have checkpointed might now refer a different process.

3.2.4 Opening pidfd(s) for a Process(es) Inside the Process Tree Being Restored

A pidfd can also refer to a process in the same process tree. A parent can open one for a child, a
child can for the parent or a child can open one for a different child (A process might also open
a pidfd that refers to itself). This presents a problem for CRIU. We will have to ensure that a
process exists before trying to open a pidfd for it.

3.3 File Descriptors created using pidfd getfd

Additional work might not be required to add support for this syscall. Since, pidfd getfd creates
a duplicate file descriptor, these can be C/R similiar to any other file descriptor.

3.4 Adding Tests

A proper implementation of pidfds should be able checkpoint/restore in a variety of use cases.
Tests are necessary to prove this fact.
Tests should demonstrate the following facts:

• C/R of pidfds works in the simplest case.

• C/R of pidfds works in a more involved example consisting many open pidfds referring to
different processes.

• C/R of pidfds works for processes resembling real world use cases.

4 Timeline

4.1 2 April - 1 May

• Experiment and better understand the checkpointing and restoring process of CRIU. (es-
pecially for files).

• Design and Implement a proof of concept for adding support for pidfds.

4.2 1 May - 26 May (Community Bonding Period)

• Discuss the minor aspects of the proposal with the mentors and recognize any problems that
may arise during implementation.

• Based on feedback, modify the proposal and finalise the solution.

5

4.3 27 May - 12 July (Phase I)

• 27 May - 9 June: Work on checkpointing pidfds

• 10 June - 23 June: Work on implementing restore for process(es) outside dumpee’s process
tree

• 24 June - 30 June: Added Tests and discuss solutions for verifying that the correct process
has been restored

• 1 July - 7 July: Implement some verification techniques

• 8 July - 12 July: Midterm evaluation and potential change of plans for Phase II

4.4 12 July - August 26 (Phase II)

• 15 July - 21 July: Begin work on implementing restore for pidfd’s of processes in the
current process tree.

• 22 July - 4 August: Finish work on implementing restore for pidfd’s of processes in the
current process tree.

• 5 Aug - 11 August: Write tests for pidfds and integrate them with the zdtm test suite

• 12 Aug - 18 August: Write documentation, clean up the pull request.

• 19 Aug - 26 August: A buffer week to accommodate changes and rescheduling.

4.5 After August 26

• pidfds are still a evolving feature of the Linux Kernel. I can continue to look after this
implementation and extend its functionality.

• I would also like to improve documentation for CRIU.

5 Personal Information

• Name: Bhavik Sachdev

• Email: b.sachdev1904@gmail.com

• Phone Number: +91 8319336255

• GitHub: bsach64

• LinkedIn: Bhavik Sachdev

• Location: Raipur, India

• Timezone: GMT +0530

5.1 About Me

I am a second-year student at IIIT Naya Raipur, India, pursuing a degree in Computer Science.
I have always been fascinated with everything computers, be it hardware or software. I keep up
with the latest hardware releases from Intel, Nvidia, and AMD.

My interest in systems programming and CRIU started with a simple question: How does a
shell work? This led me down a rabbit hole, and I tried to learn everything about Linux pro-
cesses and the kernel. I even built a simple shell. When I wanted to apply for GSOC, CRIU was an
obvious choice as it perfectly aligns with my interests. Over the past couple of months, as I have
dug deeper into the CRIU codebase, I have learned so much through that process, and I would
love to contribute to it.

6

https://criu.org/ZDTM_test_suite
mailto:b.sachdev1904@gmail.com
https://www.github.com/bsach64
https://www.linkedin.com/bsach64
https://github.com/bsach64/bhshell

5.2 Open Source Activity

I have opened a PR for solving a issue in the CRIU repository:

• zdtm: Distinguish between fail and crash of dump

I have contributed to the sympy repository (Relevant PRs):

• Added a function for opportunistic subscripts used in the expint and polylog functions

• Added a test for an edge case in the plot3d function

• Enhanced documentation for the new biomechanics sympy module

5.3 Commitments During GSOC 2024

I will have my end-semester examinations in the first and second week of May (During the Com-
munity Bonding Period). Apart from that, I am completely free this summer and fully dedicate
my time to GSOC (40-50 hours a week). I will also make up for the lost time in May.

Should circumstances impede the project’s progress, I will promptly inform my mentors and
make up for it by increasing my workload. In the event of unforeseen obstacles, I am prepared to
allocate additional time to the project in the subsequent weeks.

6 References

1. Checkpoint/Restore

2. Prajwal S N GSOC 2022 Proposal

3. A draft for implementing pidfds

4. Fdinfo Engine

5. How hard is it to open a file?

6. How to assign needed file descriptor to a file

7. man pages for /proc

8. Adding the pidfd abstraction to the kernel

9. Completing the pidfd API

10. pidfd implementation

11. CRIU Images

12. Tree After Restore

13. Dumping Files

7

https://github.com/checkpoint-restore/criu/issues/350
https://github.com/checkpoint-restore/criu/pull/2376
https://github.com/sympy/sympy/pull/25599
https://github.com/sympy/sympy/pull/25835
https://github.com/sympy/sympy/pull/25793
https://criu.org/Checkpoint/Restore
https://github.com/snprajwal/gsoc-2022/blob/main/Prajwal%20S%20N%20-%20CRIU%20(GSoC%202022).pdf
https://github.com/checkpoint-restore/criu/pull/2259
https://criu.org/Fdinfo_engine
https://criu.org/How_hard_is_it_to_open_a_file
https://criu.org/How_to_assign_needed_file_descriptor_to_a_file
https://man7.org/linux/man-pages/man5/proc.5.html
https://lwn.net/Articles/801319/
https://lwn.net/Articles/794707/
https://github.com/torvalds/linux/blob/v5.16/kernel/fork.c#L1877
https://criu.org/Images
https://criu.org/Tree_after_restore
https://criu.org/Dumping_files

	Abstract
	Technical Details
	pidfd Details
	Checkpointing
	Checkpointing Files

	Restoring
	Restoring Files

	Implementation
	Checkpointing a pidfd
	Detecting a pidfd
	Dumping a pidfd
	Defining image files for pidfds
	Parsing /proc for pidfds

	Restoring a pidfd
	Collect pidfd Data from Images
	file_desc_ops
	Opening pidfd(s) for Process(es) Outside the Process Tree Being Restored
	Opening pidfd(s) for a Process(es) Inside the Process Tree Being Restored

	File Descriptors created using pidfd_getfd
	Adding Tests

	Timeline
	2 April - 1 May
	1 May - 26 May (Community Bonding Period)
	27 May - 12 July (Phase I)
	12 July - August 26 (Phase II)
	After August 26

	Personal Information
	About Me
	Open Source Activity
	Commitments During GSOC 2024

	References

